Robot-assisted medical examination

Tele-echography has emerged as a promising and effective solution, leveraging the expertise of sonographers and the autonomy of robots to perform ultrasound scanning for patients residing in remote areas, without the need for in-person visits by the sonographer. Designing effective and natural human-robot interfaces for tele-echography remains challenging, with patient safety being a critical concern. In this article, we develop a teleoperation system for robot-assisted sonography with two different interfaces, a haptic device-based interface and a low-cost 3D Mouse-based interface, which can achieve continuous and intuitive telemanipulation by a leader device with a small workspace. To achieve compliant interaction with patients, we design impedance controllers in task space to track the desired position and orientation for these two teleoperation interfaces. We also propose comprehensive evaluation metrics of robot-assisted sonography, including subjective and objective evaluation, to evaluate tele-echography interfaces and control performance. We evaluate the ergonomic performance based on the estimated muscle fatigue and the acquired ultrasound image quality. We conduct user studies based on the NASA Task Load Index to evaluate the performance of these two human-robot interfaces. The tracking performance and the quantitative comparison of these two teleoperation interfaces are conducted by the Franka Emika Panda robot. The results and findings provide guidance on human-robot collaboration design and implementation for robot-assisted sonography. .